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Abstract 

The quality of stacking results (e.g., event enhancement, 
continuity and noise reduction) is strongly influenced not 
only by the chosen traveltime, but also by the employed 
stacking apertures. In this work, we consider two, so-
called, diffraction-stack traveltimes, together with 
corresponding stacking apertures, designed to enhance 
reflections or diffractions. The first traveltime under 
consideration is the zero-offset (ZO), common-reflection-
surface (CRS) diffraction traveltime, that is obtained from 
the general ZO CRS traveltime in the case that the target 
reflector reduces to a point, referred as the single-square-
root (SSR) traveltime. The second is the double-square-
root (DSR) traveltime, well established in time migration.  
The SSR and DSR traveltimes will be given specific 
stacking apertures based on the Projected Fresnel Zone 
(PFZ). SSR with small apertures in midpoint, produced 
comparable results with reduced computational cost as 
compared with the ones of conventional CRS with full-
parameter reflection traveltimes. In both situations, 
reflections are enhanced and diffractions attenuated. DSR 
with large midpoint apertures yields stacked sections in 
which diffractions are enhanced and reflections 
attenuated. The aperture size for optimal stacking is 
quantified by means of the PFZ that corresponds to the 
events (reflections or diffractions) under consideration. 
Synthetic and field data confirm the good potential of the 
proposed approach for image-quality improvement. 

Introduction 

Stacking is probably the tool of most widespread use in 
seismic processing. It takes advantage of the large 
redundancy of seismic dataset to "clean" it. This process, 
significantly enhance the signal-to-noise ratio, as well as 
having events (say, reflections/diffractions) better suited 
for more reliable interpretation. Stacking traveltimes are 
designed to enhance desirable events by constructive 
interference, while attenuating undesired events or noise 
by destructive interference. 

Diffraction traveltimes occupy a prominent place as 
stacking operators because of their robustness and 
simplicity, their best example being its role in Kirchhoff-
type migration. A good reason for the great success of 
diffraction-stack traveltime stems from Huygen's principle, 

in which the reflection response of a reflector can be 
thought as a superposition of the responses of point 
scatterers densely distributed on the reflector. 

A number of factors influences good stacking. These 
include (a) a stacking operator (traveltime) that is able to 
accurate follow (approximate) desired events, (b) a 
coherence measure that is able to quantify how well the 
stacking operator approximates the desired events, (c) 
possible weights to improve the stacking and/or producing 
more meaningful amplitudes and (d) carefully chosen 
apertures that are able to focus stacking where only 
constructive interference takes place. 

Here, we examine the influence of midpoint aperture 
under the use of two diffraction operators, namely (a) the 
ZO CRS diffraction traveltime, referred throughout as the 
single-square-root (SSR) traveltime and (b) the double-
square-root (DSR) diffraction traveltime. SSR is a 
simplified version of the conventional ZO CRS traveltime, 
which results when the target reflector reduces to a 
(diffraction) point. DSR, of widespread use in time 
migration, is an exact expression of a point-diffraction 
response in a homogeneous medium. In fact, one can 
show that SSR is the second-order, Taylor-polynomial 
representation of DSR. 

In this work, we find that small apertures in midpoint 
produce enhanced reflections and attenuated diffractions. 
On the other hand, large apertures in midpoint produce 
enhanced diffractions and attenuated reflections. In the 
case of reflection enhancement, stacking results obtained 
using SSR are comparable to the ones obtained (at a 
higher computational cost) by conventional, full-parameter 
CRS. However, use of the DSR traveltime with large 
midpoint apertures, leads to significant enhancement of 
diffractions together with attenuation of reflections. 

The aperture size for optimal stacking in both situations is 
quantified by means of the projected Fresnel Zone (PFZ) 
that corresponds to the events (reflections or diffractions) 
under consideration. Synthetic and field data confirm a 
good imaging potential of the proposed approach. 

CRS, SSR and DSR traveltimes 

In the following, we introduce and briefly discuss the 
CRS, SSR and DSR traveltimes. Our task is greatly 
facilitated by their widespread and routine use in seismic 
processing. 

CRS traveltime 

The CRS method (Jäger et al., 2001) is based on the 
generalized hyperbolic traveltime, which uses first and 
second derivatives with respect to midpoint and half-offset 
in the vicinity of a selected central or reference ray. 
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In the general case of a finite-offset central ray, the 
number of parameters of the CRS traveltime is five and 
fourteen for the 2D and 3D situations, respectively. Here 
we adopt the simpler case (of much more widespread 
use) in which the central ray is a ZO ray and also 
assuming non-converted data and isotropic media. In this 
situation, the number of CRS parameters reduces to, 
respectively, three and eight parameters for 2D and 3D 
datasets. The 2D ZO CRS hyperbolic traveltime reads 

���, �� � �	�
 � �∆��� � �∆�� � ���	          (1) 

where ��, �� denotes the midpoint and half-offset 
coordinates of a source receiver pair in the vicinity of the 
ZO central ray of coordinates ��
, � � 0�. Coefficients 
(CRS parameters) �, � and � are given by 

� � ��
�� ,			� � �
 ���

��� 					and						� � �
 ���
���,          (2) 

all derivatives being evaluated at � � �
 and � � 0. As 
can be readily verified, the hyperbolic CRS traveltime of 
Equation (1) is directly obtained from its parabolic 
counterpart (namely a second-order Taylor polynomial of 
traveltime, instead of traveltime squared), by squaring 
both sides and retaining the terms up to second order 
only. 

It is also well known that the coefficient, �, in Equation 
(1), is by far the most unstable parameter, being attached 
to the so-called normal (N) wave and indirectly related to 
the curvature of the reflector at the normal-incident-point 
(NIP). This heavily contrasts with the good behavior 
exhibited by the remaining parameters, � and �, 
interpreted as slowness of the central ZO ray at its 
emergence point and the normal moveout (NMO) velocity, 
respectively. As the CRS parameter � has the most 
unstable estimation, it would be attractive if, at least for 
initial estimations and lateral velocity variations, one could 
use a traveltime not dependent on that parameter. 

SSR traveltime 

In order to avoid complications involved to the estimation 
of all CRS parameters, we propose to use a simplified 
version of Equation (1), in which we set � � �. The 
resulting expression, referred simply as single-square-
root (SSR) traveltime, is given by 

������, �� � �	�
 � �∆��� � �	∆�� � ��� .       (3) 

As well known (e.g. Duveneck, 2004), the above 
traveltime readily follows from the full CRS counterpart in 
the case the target reflector reduces to a (diffraction) 
point. Substitution of full CRS traveltime with the SSR 
traveltime for stacking is not a new strategy (see, e.g., 
Garabito et al., 2001). In fact, the SSR traveltime has a 
much longer tradition as a form of diffraction stack used in 
Kirchhoff migration. As shown below, in spite of the fact 
that the traveltime Equation (3) is naturally attached to 
diffractions, we find that such traveltime can be very well 
suited to reflections, as long as proper apertures, in both 
midpoint and offset, are chosen. More specifically, for 
reflection enhancement, a small aperture in midpoint 
should be used combined with a large aperture in offset.  

DSR traveltime 

Because of its Taylor expansion character, SSR fails to 
approximate the diffraction events when large apertures 
in midpoint and offset are considered. Trying to avoid 
such limitation, one can use smaller apertures in offset, 
which diminishes the benefits of redundancy. Moreover, 
in many cases, required near offsets are even not 
available in the dataset. As a remedy to overcome such 
drawbacks, we use a different diffraction traveltime 
equation, also defined in terms of CRS parameters, 
namely the double-square-root (DSR). That is given by 

������, �� � 

�
�  �	�
 � �∆!�� � �∆!� � �	�
 � �∆"�� � �∆"�#   (4) 

where ∆! � � $ � $ �
 and ∆" � � � � $ �
. The rule of 
thumb behind the use of DSR is that, as opposed to SSR, 
it provides an exact point-diffraction traveltime in 
homogeneous media. As a consequence, at least for 
mild-to-moderate laterally velocity variations, DSR should 
be expected to well approximate diffractions in apertures 
comparable to the Fresnel zone associated with the 
measurement configuration.  

Stacking apertures 

In the following, we examine the problem of choosing 
apertures optimally designed for enhancing reflection or 
diffraction events. Our analysis uses the concept and 
properties of the so-called Projected Fresnel Zone (PFZ). 
Introduced in Schleicher et al. (1997), the PFZ is given by  

%��&' $ ��('% ) *
�  ,                           (5) 

where ��&' and ��('	represents the reflection and 
diffraction traveltimes, respectively. Finally, + is the pulse 
length.  

One key observation is that, by its very definition, the size 
of the PFZ is small for reflections and large for diffractions 
in midpoint direction. As shown in Faccipieri et al. (2013) 
and Asgedom et al. (2013), the use of large (midpoint) 
apertures in SSR can be very effective for imaging 
diffraction energy. However, the definition of what can be 
considered small and large should be better defined in 
order to achieve optimal results for diffraction or reflection 
enhancement. It should be noted that Asgedom et al. 
(2013), in the framework of common-offset (CO) CRS, 
introduced a traveltime curve tailored for diffractions. That 
traveltime generalizes DSR in a horizontally layered 
replacement medium. In this situation, proper bounds on 
the CRS parameters can be easily obtained, with the 
aperture size being directly related to the displacement of 
the central point to the horizontal coordinate of the 
diffraction point. 

Our aim now is to express the PFZ Inequality (5) in terms 
of the coefficients (CRS parameters) of the CRS, SSR 
and DSR traveltimes. For that purpose, it is convenient to 
introduce the parabolic version of these traveltimes, 
meaning the second-order Taylor polynomial 
approximations of the square-root Equations (1), (3) and 
(4), respectively. Denoted by �,��

-./, ����
-./, and ����

-./ , such 
parabolic traveltimes are given by 



FACCIPIERI, COIMBRA, GELIUS & TYGEL 
 ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Fourteenth International Congress of the Brazilian Geophysical Society 

3

�,��
-./ � �
 � �∆� � �

��0
	�∆� � ���,             (6) 

and 

����
-./ � ����

-./ � �
 � �∆� � �
��0 �	∆� � ��.         (7) 

Expressing the traveltimes ��&' and ��(' by their parabolic 
approximations (6) and (7) in the PFZ Inequality (5) yields 

|∆�| ) 2 *�0
|34,|.                              (8) 

The inequality (8) relates the midpoint aperture with the 
CRS parameters � and  . As seen below, such inequality 
will be taken as a starting point to define the midpoint 
apertures to be used to stack reflections or diffractions. 

We note that the above relations pose no restrictions on 
offset. Our proposal here is to consider, for offset 
apertures, the same ones that are used in conventional 
common-midpoint (CMP) method, those being limited 
only by second-order approximation, stretch factors and 
critical angles. 

Apertures for reflections 

In principle, the right-hand-side of inequality (8) provides 
a natural candidate for midpoint aperture designed to 
enhance reflections. However, if SSR (which depends on 
� and � only) is the traveltime of choice, the dependence 
of parameter � is to be eliminated. For that aim, we 
introduce the following heuristic assumptions: 1) |�| ) |�| 
on a reflection event and 2) An initial approximation of 
parameter � is known. In this case, the minimum stacking 
aperture, 5�&'

���, can be considered as the case where 
� � $�, which leads to 

5�&'
��� � |∆�| ) 2*�0

�,  .                       (9) 

Recalling that 

� � 6
789:� ,                                (10) 

where ;<=> denotes the normal-moveout (NMO) velocity. 
Substituting Equation (10) into Equation (9) we obtain  

5�&'
��� ) 789:

� 2*�0
� .                       (11) 

We observe that, once the stacking apertures in midpoint, 
5�&'

��� and in half-offset, 5�&'
��� , are defined, the estimation of 

� and � can be performed using SSR traveltime of 
Equation (3). The stacking is then performed with the 
same apertures used in the estimation of parameters. The 
difference between the aperture sizes of the original PFZ 
and 5�&'

��� is illustrated in Figure (1). Figure (2) shows a 
schematic view of the stacking apertures proposed for 
reflection enhancement. 

Apertures for diffractions 

We now address the problem of finding a counterpart 
aperture that is adequate for diffraction enhancement. In 
the same way as in our previous discussion on reflection 
enhancement, we base our discussion on the Fresnel 
inequality (5) which has led to inequality (8). In the case 

of diffraction, we have that, strictly speaking, ��&' � ��(', 
so that, consequently, the midpoint aperture is infinite. 
Under this circumstance, our strategy is to take the 
largest possible midpoint aperture, as long as the 
stacking traveltime (e.g., SSR or DSR) remains a reliable 
approximation of the one of the event under consideration 
(see Figure 3). The above argument justifies the choice of 
the DSR traveltime, as it provides a better approximation 
of diffraction traveltimes for large midpoints and also 
offsets. 

To select optimal midpoint and half-offset apertures, 5�('
��� 

and 5�('
��� , to enhance diffractions using the DSR 

traveltime, we adopt the following (also heuristic) strategy: 
For each sample, ��
, �
� on which the stacking will 
performed, we take,  

5�('
��� � 5,=?

��� .                              (12) 

In other words, the aperture employed to estimate the 
parameter � using the CMP configuration. For the 
midpoint aperture, 5�('

���, we propose the choice 

5�('
��� � 5�('

��� � 5,=?
��� .                       (13) 

This means that we take equal apertures in midpoint and 
half-offset. Figure (4) shows a schematic view of the 
stacking apertures proposed for diffraction enhancement. 

Results 

The proposed approach was applied to a 2D marine real 
dataset acquired offshore in Brazil with 4ms of time 
sampling, 12.5 m between Common Midpoint (CMP) 
gathers with maximum fold of 60 traces. The pre-
processing steps applied on this data set can found in 
Faccipieri et al. (2013). 

In order to demonstrate the effectiveness of the SSR 
estimation and stacking to enhance reflections, we 
processed the data by (a) conventional CRS, based on 
the CRS traveltime of three parameters, �, � and � of 
Equation (1) and (b) the alternative approach, which 
employs the SSR of two parameters, � and �, as given by 
Equation (3). In both situations, we assume that velocity 
analysis has been previously carried out. In this way, an 
estimation of NMO-velocities, ;<=>, and offset (CMP) 
apertures, 5�&'

���  are supposedly available. We also 
assume that the dominant frequency of the data, +, has 
been already estimated. 

Under these circumstances, we perform, for both CRS 
and SSR situations, global estimation of parameters. The 
last step for our imaging is stacking and here the choice 
of aperture is crucial. In both cases, we used the 
apertures in midpoint and half-offset as prescribed by 
Equation (11). 

Figure (5) compares three illustrative stacked traces 
under the use of CRS and SSR, respectively. The 
corresponding entire sections are displayed in Figure (6).  
The results are very similar, with the SSR stack slightly 
better, showing less high-frequency noise. However, 
since the proposed minimum aperture reduces the 
influence of parameter � one can state that if a larger  
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Figure 1: PFZ for a ZO reflection event with pulse length 
+ at a given point ��
, �
�, highlighted in green. Note how 
the midpoint aperture for the SSR moveout, 5�&'

���, well 
adjusts small region of the reflection event. 

 
Figure 2: Schematic representation of the proposed 
apertures in midpoint (5�&'

���) and half-offset (5�&'
��� ) direction 

for reflection enhancement. 

aperture in midpoints were used, the resulting stacked 
section should be better. Figure 7 shows a stacked 
section obtained with the CRS traveltime with the double 
of the minimum aperture used on the previous example. 
Note that the resolution were compromised and the 
reflectors heavily smoothed. 

The results for diffraction enhancement using the 
proposed aperture in midpoint are shown on Figure 8 for 
SSR and DSR traveltimes. The apertures in offset 
direction for the SSR traveltime were three times smaller 
them the ones used with the DSR traveltime to ensure 
both traveltimes yield reliable approximations. 
Nevertheless, the DSR showed better separation of 
events and almost no residual reflections as expected, 
since it can use more traces to construct every sample on 
the stacked section. 

Conclusions 

In the framework of CRS stacking, we propose an 
approach to reduce the number of parameters to be  

 

Figure 3: PFZ for a ZO diffraction event with pulse length 
w at a given point ��
, �
�, highlighted in green. Note that 
the aperture in midpoints for DSR, 5�('

��� , adjusts a much 
larger region of the diffraction event. 

Figure 4: Schematic representation of the proposed 
apertures in midpoint (5�('

���) and half-offset (5�('
���) direction 

for diffraction enhancement. 
 
estimated in order to obtain a stacked section with 
reflections or diffractions. The diffraction SSR traveltime, 
which depends on less parameters than CRS, was 
investigated to stack reflection events. Stacked sections 
obtained with SSR with varying apertures were tested and 
in the case of small apertures in midpoints, the results 
were slightly better and with lower computational cost to 
the ones obtained with the conventional CRS with full-
parameter (designed for reflections). In both cases, 
reflections are enhanced and diffractions attenuated.  
 
Diffraction enhancement using SSR and DSR traveltimes 
were compared with varying apertures. The DSR with 
large midpoint and offset apertures produced cleaner 
stacked sections in which diffractions are enhanced and 
reflections attenuated. In addition, the quantification of 
small and large apertures was defined using the PFZ for 
optimal imaging of reflections and diffractions. 
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Figure 5: Comparison between three stacked traces, 
CMP’s 750, 1000 and 1250, with minimum aperture in 
midpoint direction and large aperture in offset direction, 
obtained with the CRS traveltime, estimating �, � and � 
(solid red line) and with SSR traveltime, estimating � and 
� (dashed blue line). 
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Figure 6: Reflection enhancement: Comparison between 
CRS (top) and SSR (bottom) stacked sections with 
minimum apertures in midpoints and large apertures in 
offset direction. Note that SSR showed less high-
frequency noise. 
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Figure 7: Reflection enhancement: Stacked section 
obtained with the CRS traveltime using the double of the 
minimum aperture in midpoints. Note that the reflections 
were smoothed and resolution compromised. 
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Figure 8: Diffraction enhancement: Comparison between 
SSR (top) and DSR (bottom) stacked sections with the 
same apertures in midpoint direction. Note that DSR 
obtained better separation of events and almost no 
residual reflections. 
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